2c: Bit Arithmetic

++bex

Binary exponent

Computes the result of 2^a, where a is a block size (see $bloq), producing an atom.

Accepts

a is an bloq.

Produces

An atom.

Source

++ bex
~/ %bex
|= a=bloq
^- @
?: =(0 a) 1
(mul 2 $(a (dec a)))

Examples

> (bex 4)
16
> (bex (add 19 1))
1.048.576
> (bex 0)
1

++can

Assemble

Produces an atom from a list b of length-value pairs p and q, where p is the length in blocks of size a, and q is an atomic value.

Accepts

a is a block size (see $bloq).

b is a list of length-value pairs, p and q:

  • p is a step.
  • q is a @.

Produces

An atom.

Source

++ can
~/ %can
|= [a=bloq b=(list [p=step q=@])]
^- @
?~ b 0
(add (end [a p.i.b] q.i.b) (lsh [a p.i.b] $(b t.b)))

Examples

> `@ub`21 :: @ub is the binary aura
0b1.0101
> `@ub`(can 3 ~[[1 21]])
0b1.0101
> `@ub`(can 3 ~[[1 1]])
0b1
> `@ub`(can 0 ~[[1 255]])
0b1
> `@ux`(can 3 [3 0xc1] [1 0xa] ~) :: @ux is the hexadecimal aura
0xa00.00c1
> `@ux`(can 3 [3 0xc1] [1 0xa] [1 0x23] ~)
0x23.0a00.00c1
> `@ux`(can 4 [3 0xc1] [1 0xa] [1 0x23] ~)
0x23.000a.0000.0000.00c1
> `@ux`(can 3 ~[[1 'a'] [2 'bc']])
0x63.6261

++cat

Concatenate

Concatenates two atoms, b and c, according to block size a, producing an atom.

Accepts

a is a block size (see $bloq).

b is an atom.

c is an atom.

Produces

An atom.

Source

++ cat
~/ %cat
|= [a=bloq b=@ c=@]
(add (lsh [a (met a b)] c) b)

Examples

> `@ub`(cat 3 1 0) :: @ub is the binary aura
0b1
> `@ub`(cat 0 1 1)
0b11
> `@ub`(cat 0 2 1)
0b110
> `@ub`(cat 2 1 1)
0b1.0001
> `@ub`256
0b1.0000.0000
> `@ub`255
0b1111.1111
> `@ub`(cat 3 256 255)
0b1111.1111.0000.0001.0000.0000
> `@ub`(cat 2 256 255)
0b1111.1111.0001.0000.0000
> (cat 3 256 255)
16.711.936
> (cat 2 256 255)
1.044.736

++cut

Slice

Slices c blocks of size a that are positioned b blocks from the end of d. That slice is produced as an atom.

Accepts

a is a block size (see $bloq).

[b c] where:

d is an atom.

Produces

An atom.

Source

++ cut
~/ %cut
|= [a=bloq [b=step c=step] d=@]
(end [a c] (rsh [a b] d))

Examples

> (cut 0 [1 1] 2)
1
> (cut 0 [2 1] 4)
1
> `@t`(cut 3 [0 3] 'abcdefgh') :: @t is the cord aura
'abc'
> `@t`(cut 3 [1 3] 'abcdefgh')
'bcd'
> `@ub`(cut 0 [0 3] 0b1111.0000.1101) :: @ub is the binary aura
0b101
> `@ub`(cut 0 [0 6] 0b1111.0000.1101)
0b1101
> `@ub`(cut 0 [4 6] 0b1111.0000.1101)
0b11.0000
> `@ub`(cut 0 [3 6] 0b1111.0000.1101)
0b10.0001

++end

Tail

Produces an atom by taking the last step blocks of size bloq from b.

Accepts

a is an atom slice specifier (see $bite), which is a block size (see $bloq) with optional block count.

b is an atom.

Produces

An atom.

Source

++ end
~/ %end
|= [a=bite b=@]
=/ [=bloq =step] ?^(a a [a *step])
(mod b (bex (mul (bex bloq) step)))

Examples

> (end [2 2] 255)
255
> (end [3 1] 255)
255
> (end 3 255)
255
> (end 3 256)
0
> `@ub`12 :: @ub is the binary aura
0b1100
> `@ub`(end [0 3] 12)
0b100
> (end [0 3] 12)
4
> `@ub`(end [1 3] 12)
0b1100
> (end [1 3] 12)
12
> `@ux`'abc' :: @ux is the hexademical aura
0x63.6261
> `@ux`(end [3 2] 'abc')
0x6261
> `@t`(end [3 2] 'abc') :: @t is the cord aura
'ab'

++fil

Fill bloqstream

Produces an atom by repeating c for b blocks of size a.

Accepts

a is a block size (see $bloq).

b is a step.

c is an atom.

Produces

An atom.

Source

++ fil
~/ %fil
|= [a=bloq b=step c=@]
=| n=@ud
=. c (end a c)
=/ d c
|- ^- @
?: =(n b)
(rsh a d)
$(d (add c (lsh a d)), n +(n))

Examples

> `@t`(fil 3 5 %a) :: @t is the cord (string) aura
'aaaaa'
> `@t`(fil 5 10 %ceeb)
'ceebceebceebceebceebceebceebceebceebceeb'
> `@t`(fil 4 10 'eced')
'ecececececececececec'
> `@tas`(fil 4 10 %bf) :: @tas is the term aura
%bfbfbfbfbfbfbfbfbfbf
> `@ub`(fil 2 6 1) :: @ub is the binary aura
0b1.0001.0001.0001.0001.0001

++lsh

Left-shift

Produces an atom by left-shifting b by step blocks of size bloq.

Accepts

a is an atom slice specifier (see $bite), which is a block size (see $bloq) with optional block count.

b is an atom.

Produces

An atom.

Source

++ lsh
~/ %lsh
|= [a=bite b=@]
=/ [=bloq =step] ?^(a a [a *step])
(mul b (bex (mul (bex bloq) step)))

Examples

> `@ub`1 :: @ub is the binary aura
0b1
> `@ub`(lsh [0 1] 1)
0b10
> (lsh [0 1] 1)
2
> (lsh 0 1)
2
> `@ub`255
0b1111.1111
> `@ub`(lsh [3 1] 255)
0b1111.1111.0000.0000
> (lsh [3 1] 255)
65.280

++met

Measure

Computes the number of blocks of size a in b, producing an atom.

Accepts

a is a block size (see $bloq).

b is an atom.

Source

++ met
~/ %met
|= [a=bloq b=@]
^- @
=+ c=0
|-
?: =(0 b) c
$(b (rsh a b), c +(c))

Examples

> (met 0 1)
1
> (met 0 2)
2
> (met 3 255)
1
> (met 3 256)
2
> (met 3 'abcde')
5

++rap

Assemble non-zero

Concatenates a list of atoms b using block size a, producing an atom.

Accepts

a is a block size (see ++bloq).

b is a list of atoms.

Produces

An atom.

Source

++ rap
~/ %rap
|= [a=bloq b=(list @)]
^- @
?~ b 0
(cat a i.b $(b t.b))

Examples

> `@ub`(rap 2 [1 2 3 4 ~]) :: @ub is the binary aura
0b100.0011.0010.0001
> `@ub`(rap 1 [1 2 3 4 ~])
0b1.0011.1001
> (rap 0 [0 0 0 ~])
0
> (rap 0 [1 0 1 ~])
3
> `@ub`3
0b11
> (rap 0 [0 1 0 0 1 2 ~])
11
> (rap 0 [1 1 2 ~])
11
> `@ub`11
0b1011

Discussion

Any element of the value 0 is not included in concatenation.


++rep

Assemble single

Produces an atom by assembling a list of atoms b using block size a.

Accepts

a is an atom slice specifier (see $bite), which is a block size (see $bloq) with optional block count.

b is a list of atoms.

Produces

An atom.

Source

++ rep
~/ %rep
|= [a=bite b=(list @)]
=/ [=bloq =step] ?^(a a [a *step])
=| i=@ud
|- ^- @
?~ b 0
%+ add $(i +(i), b t.b)
(lsh [bloq (mul step i)] (end [bloq step] i.b))

Examples

> `@ub`(rep 2 [1 2 3 4 ~]) :: @ub is the binary aura
0b100.0011.0010.0001
> (rep 0 [0 0 1 ~])
4
> (rep 0 [0 0 0 1 ~])
8
> `@ub`(rep 0 [0 0 0 1 ~])
0b1000
> `@ub`8
0b1000
> `@ub`(rep 0 [1 0 1 0 ~])
0b101
> `@ub`(rep 0 [1 2 3 4 ~])
0b101
> (rep 0 [0 1 0 1 ~])
10
> (rep 0 [1 0 1 0 1 ~])
21
> `@ub`21
0b10.1010
> `@ub`(rep 3 [12 166 8 34 ~])
0b10.0010.0000.1000.1010.0110.0000.1100
> `*`"abcd"
[97 98 99 100 0]
> `@t`(rep 3 "abcd") :: @t is the text aura
'abcd'

++rev

Reverses block order, accounting for leading zeroes.

Produces an atom from the bits of dat in reverse order according to a block size boz and a size len.

If the total size is less than the length of dat, then only the first bits of dat up to the total size will be taken and reversed. If the total size is longer, trailing zeroes will be added.

Accepts

boz is a block size with optional block count (see $bloq).

len is a @ud of the number of blocks of size boz to be reversed.

dat is an atom.

Produces

An atom.

Source

++ rev
~/ %rev
|= [boz=bloq len=@ud dat=@]
^- @
=. dat (end [boz len] dat)
%+ lsh
[boz (sub len (met boz dat))]
(swp boz dat)

Examples

> =a 0b1111.0000.1111.1010.0011
> `@ub`(rev 0 20 a)
0b1100.0101.1111.0000.1111
> `@ub`(rev 0 12 a)
0b1100.0101.1111
> `@ub`(rev 2 5 a)
0b11.1010.1111.0000.1111
> `@ub`(rev 2 4 a)
0b11.1010.1111.0000
> `@ub`(rev 2 6 a)
0b11.1010.1111.0000.1111.0000
> (rev 1 10 1.000)
179.200
> (rev 2 5 1.000)
582.400
> (rev 1 5 1.000)
175

++rip

Disassemble

Produces a list of atoms from the bits of b using block size a.

Accepts

a is an atom slice specifier (see $bite), which is a block size (see $bloq) with optional block count.

b is an atom.

Produces

A list of atoms.

Source

++ rip
~/ %rip
|= [a=bite b=@]
^- (list @)
?: =(0 b) ~
[(end a b) $(b (rsh a b))]

Examples

> `@ub`155 :: @ub is the binary aura
0b1001.1011
> (rip 0 155)
~[1 1 0 1 1 0 0 1]
> (rip 2 155)
~[11 9]
> (rip 0 11)
~[1 1 0 1]
> (rip 1 155)
~[3 2 1 2]
> `@ub`256
0b1.0000.0000
> (rip 0 256)
~[0 0 0 0 0 0 0 0 1]
> (rip 2 256)
~[0 0 1]
> (rip 3 256)
~[0 1]
> `tape`(rip 3 'abcd')
"abcd"

++rsh

Right-shift

Right-shifts b by step blocks of size bloq, producing an atom.

Accepts

a is an atom slice specifier (see $bite), which is a block size (see $bloq) with optional block count.

b is an atom.

Produces

An atom.

Source

++ rsh
~/ %rsh
|= [a=bite b=@]
=/ [=bloq =step] ?^(a a [a *step])
(div b (bex (mul (bex bloq) step)))

Examples

> `@ub`145 :: @ub is the binary aura
0b1001.0001
> `@ub`(rsh [1 1] 145)
0b10.0100
> (rsh [1 1] 145)
36
> (rsh 1 145)
36
> `@ub`(rsh [2 1] 145)
0b1001
> (rsh [2 1] 145)
9
> `@ub`10
0b1010
> `@ub`(rsh [0 1] 10)
0b101
> (rsh [0 1] 10)
5
> `@ux`'abc'
0x63.6261
> `@t`(rsh [3 1] 'abc')
'bc'
> `@ux`(rsh [3 1] 'abc')
0x6362

++run

++turn into atom.

Disassembles atom b into slices specified by a, applies c to each slice, and reassembles the results back into an atom.

Accepts

a is an atom slice specifier (see $bite), which is a block size (see $bloq) with optional block count.

b is an atom.

c is a gate that accepts an atom and produces an atom.

Produces

An atom.

Source

++ run
~/ %run
|= [a=bite b=@ c=$-(@ @)]
(rep a (turn (rip a b) c))

Examples

> `@ux`65.535 :: @ux is the hexadecimal aura
0xffff
> `@ux`(run 2 65.535 dec) :: dec is the decrement gate
0xeeee

++rut

++turn into list.

Disassembles atom b into slices specified by a, applies c to each slice, and assembles the results back into a.

Accepts

a is an atom slice specifier (see $bite), which is a block size (see $bloq) with optional block count.

b is an atom.

c is a gate that accepts an atom.

Produces

A list.

Source

++ rut
~/ %rut
|* [a=bite b=@ c=$-(@ *)]
(turn (rip a b) c)

Examples

> `@ux`65.535 :: @ux is the hexadecimal aura
0xffff
> `(list @ux)`(rut 2 65.535 dec) :: dec is the decrement gate
~[0xe 0xe 0xe 0xe]

++sew

Stitch one atom into another

Replace c blocks of size a at offset b of atom e with c blocks of size a from atom d.

That is, take (end [a c] d) from d and overwrite the (cut a [b c] e) part of e.

Or in simpler terms, take from the start of d and replace some part of e with it.

Accepts

a is a $bloq (block size).

[b c d] where:

  • b is a step specifying the number of bloqs to offset.
  • b is a step specifying the number of bloqs to replace.
  • d is the donor atom.

e is the recipient atom.

Produces

An atom.

Source

++ sew
~/ %sew
|= [a=bloq [b=step c=step d=@] e=@]
^- @
%+ add
(can a b^e c^d ~)
=/ f [a (add b c)]
(lsh f (rsh f e))

Examples

> `@t`(sew 3 [0 0 'XXXX'] 'OOOO')
'OOOO'
> `@t`(sew 3 [0 1 'XXXX'] 'OOOO')
'XOOO'
> `@t`(sew 3 [2 1 'XXXX'] 'OOOO')
'OOXO'
> `@t`(sew 3 [2 2 'XXXX'] 'OOOO')
'OOXX'
> `@t`(sew 3 [0 4 'XXXX'] 'OOOO')
'XXXX'

++swp

Reverse block order

Switches little-endian to big-endian and vice versa: produces an atom by reversing the block order of b using block size a.

Accepts

a is a block size (see $bloq).

b is an atom.

Produces

An atom

Source

++ swp
~/ %swp
|= [a=bloq b=@]
(rep a (flop (rip a b)))

Examples

> `@ub`24 :: @ub is the binary aura
0b1.1000
> (swp 0 24)
3
> `@ub`3
0b11
> (swp 0 0)
0
> (swp 0 128)
1

++xeb

Binary logarithm

Computes the base-2 logarithm of a, producing an atom.

Accepts

a is an atom.

Produces

An atom.

Source

++ xeb
~/ %xeb
|= a=@
^- @
(met 0 a)

Examples

> (xeb 31)
5
> (xeb 32)
6
> (xeb 49)
6
> (xeb 0)
0
> (xeb 1)
1
> (xeb 2)
2

++fe

Modulo bloq

Core that contains arms for bloq and modular integer operations.

Accepts

a is a bloq.

Source

|_ a=bloq

++dif:fe

Produces the difference between two atoms in the modular basis representation.

Accepts

a is a bloq (and is the sample of the parent core).

b is an atom.

c is an atom.

Produces

A @s.

Source

++ dif
|=([b=@ c=@] (sit (sub (add out (sit b)) (sit c))))

Examples

> (~(dif fe 3) 63 64)
255
> (~(dif fe 3) 5 10)
251
> (~(dif fe 3) 0 1)
255
> (~(dif fe 0) 9 10)
1
> (~(dif fe 0) 9 11)
0
> (~(dif fe 0) 9 12)
1
> (~(dif fe 2) 9 12)
13
> (~(dif fe 2) 63 64)
15

++inv:fe

Inverse

Inverts the order of the modular field.

Accepts

a is a bloq (and is the sample of the parent core).

b is a bloq. (see $bloq)

Produces

An atom.

Source

++ inv |=(b=@ (sub (dec out) (sit b)))

Examples

> (~(inv fe 3) 255)
0
> (~(inv fe 3) 256)
255
> (~(inv fe 3) 0)
255
> (~(inv fe 3) 1)
254
> (~(inv fe 3) 2)
253
> (~(inv fe 3) 55)
200

++net:fe

Flip endianness

Reverses bytes within a block.

Accepts

a is a bloq (and the sample of the parent core).

b is a bloq. (see $bloq)

Produces

An atom.

Source

++ net |= b=@ ^- @
=> .(b (sit b))
?: (lte a 3)
b
=+ c=(dec a)
%+ con
(lsh c $(a c, b (cut c [0 1] b)))
$(a c, b (cut c [1 1] b))

Examples

> (~(net fe 3) 64)
64
> (~(net fe 3) 128)
128
> (~(net fe 3) 255)
255
> (~(net fe 3) 256)
0
> (~(net fe 3) 257)
1
> (~(net fe 3) 500)
244
> (~(net fe 3) 511)
255
> (~(net fe 3) 512)
0
> (~(net fe 3) 513)
1
> (~(net fe 3) 0)
0
> (~(net fe 3) 1)
1
> (~(net fe 0) 1)
1
> (~(net fe 0) 2)
0
> (~(net fe 0) 3)
1
> (~(net fe 6) 1)
72.057.594.037.927.936
> (~(net fe 6) 2)
144.115.188.075.855.872
> (~(net fe 6) 3)
216.172.782.113.783.808
> (~(net fe 6) 4)
288.230.376.151.711.744
> (~(net fe 6) 5)
360.287.970.189.639.680

++out:fe

Max integer value

Produces the maximum integer value that the current block can store; 2^a^a.

Accepts

a is a bloq (and is the sample of the parent core).

Produces

An atom.

Source

++ out (bex (bex a))

Examples

> ~(out fe 0)
2
> ~(out fe 1)
4
> ~(out fe 2)
16
> ~(out fe 3)
256
> ~(out fe 4)
65.536
> ~(out fe 10)
\/179.769.313.486.231.590.772.930.519.078.902.473.361.797.697.894.230.657.273\/
.430.081.157.732.675.805.500.963.132.708.477.322.407.536.021.120.113.879.87
1.393.357.658.789.768.814.416.622.492.847.430.639.474.124.377.767.893.424.8
65.485.276.302.219.601.246.094.119.453.082.952.085.005.768.838.150.682.342.
462.881.473.913.110.540.827.237.163.350.510.684.586.298.239.947.245.938.479
.716.304.835.356.329.624.224.137.216
\/ \/

++rol:fe

Roll left

Rolls d to the left by c b-sized blocks.

Accepts

a is a bloq (and is the sample of the parent core).

b is a bloq.

c is an atom.

d is an atom.

Produces

An atom.

Source

++ rol |= [b=bloq c=@ d=@] ^- @
=+ e=(sit d)
=+ f=(bex (sub a b))
=+ g=(mod c f)
(sit (con (lsh [b g] e) (rsh [b (sub f g)] e)))

Examples

> `@ux`(~(rol fe 6) 4 3 0xabac.dedf.1213)
0x1213.0000.abac.dedf
> `@ux`(~(rol fe 6) 4 2 0xabac.dedf.1213)
0xdedf.1213.0000.abac
> `@t`(~(rol fe 5) 3 1 'dfgh')
'hdfg'
> `@t`(~(rol fe 5) 3 2 'dfgh')
'ghdf'
> `@t`(~(rol fe 5) 3 0 'dfgh')
'dfgh'

++ror:fe

Roll right

Rolls d to the right by c b-sized blocks.

Accepts

a is a bloq (and is the sample of the parent core).

b is a bloq.

c is an atom.

d is an atom.

Produces

An atom.

Source

++ ror |= [b=bloq c=@ d=@] ^- @
=+ e=(sit d)
=+ f=(bex (sub a b))
=+ g=(mod c f)
(sit (con (rsh [b g] e) (lsh [b (sub f g)] e)))

Examples

> `@ux`(~(ror fe 6) 4 1 0xabac.dedf.1213)
0x1213.0000.abac.dedf
> `@ux`(~(ror fe 6) 3 5 0xabac.dedf.1213)
0xacde.df12.1300.00ab
> `@ux`(~(ror fe 6) 3 3 0xabac.dedf.1213)
0xdf12.1300.00ab.acde
> `@t`(~(rol fe 5) 3 0 'hijk')
'hijk'
> `@t`(~(rol fe 5) 3 1 'hijk')
'khij'
> `@t`(~(rol fe 5) 3 2 'hijk')
'jkhi'

++sum:fe

Sum

Sums two numbers in this modular field.

Accepts

a is a bloq (and is the sample of the parent core).

b is an atom.

c is an atom.

Produces

An atom.

Source

++ sum |=([b=@ c=@] (sit (add b c)))

Examples

> (~(sum fe 3) 10 250)
4
> (~(sum fe 0) 0 1)
1
> (~(sum fe 0) 0 2)
0
> (~(sum fe 2) 14 2)
0
> (~(sum fe 2) 14 3)
1
> (~(sum fe 4) 10.000 256)
10.256
> (~(sum fe 4) 10.000 100.000)
44.464

++sit:fe

Enforce modulo

Produces an atom in the current modular block representation.

Accepts

a is a bloq (and is the sample of the parent core).

b is an atom.

Produces

An atom.

Source

++ sit |=(b=@ (end a b))

Examples

> (~(sit fe 3) 255)
255
> (~(sit fe 3) 256)
0
> (~(sit fe 3) 257)
1
> (~(sit fe 2) 257)
1
> (~(sit fe 2) 10.000)
0
> (~(sit fe 2) 100)
4
> (~(sit fe 2) 19)
3
> (~(sit fe 2) 17)
1
> (~(sit fe 0) 17)
1
> (~(sit fe 0) 0)
0
> (~(sit fe 0) 1)
1